Indian Statistical Institute, Bangalore Centre B.Math.(Hons.)II Year - 2016-17, First Semester Optimization

Mid Term Exam 14 September 2016, 2 pm - 5 pm. Instructor: P.S.Datti Max.Marks: 30

NOTE: Answer any **FIVE** questions. WRITE NEATLY.

1. Let
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 2 \\ 3 & 1 & 5 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 14 \\ 18 \\ 20 \end{pmatrix}$. Obtain the **LU** decomposition of **A** and use it to solve the system $\mathbf{A}\mathbf{x} = \mathbf{b}$. (3+3)

- (i) Let \mathbf{a}, \mathbf{b} be column vectors in \mathbb{R}^n and consider the matrix $\mathbf{A} = \mathbf{I} + \mathbf{a}\mathbf{b}^t$. Show 2. that $\mathbf{A}^2 + \alpha \mathbf{A} + \beta \mathbf{I} = \mathbf{O}$ for some real numbers α and β . Hence find \mathbf{A}^{-1} , when exists. (3)
 - (ii) Consider the $n \times n$ matrix

$$\mathbf{B} = \begin{pmatrix} a & b & b & \dots & b \\ b & a & b & \dots & b \\ b & b & a & \dots & b \\ \dots & \dots & \dots & \dots & \dots \\ b & b & b & \dots & a \end{pmatrix},$$

where a, b are real numbers such that $a \neq b$ and $a + (n-1)b \neq 0$. Solve the system $\mathbf{B}\mathbf{x} = \mathbf{c}$ for a given vector $\mathbf{c} \in \mathbb{R}^n$. (Suggestion: Write a scalar multiple of \mathbf{B} in the form of the matrix as in (i)) (3)

3. (a) Let $\mathbf{A} = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$. Find a 4 × 3 matrix \mathbf{Q} satisfying $\mathbf{Q}^t \mathbf{Q} = \mathbf{I}_3$ and an upper

triangular 3×3 matrix **R** with all diagonal elements positive such that $\mathbf{A} = \mathbf{QR}$. (4)

- (b) Suppose V is an inner product space over \mathbb{C} and **P** is a projection in V. If $(\mathbf{P}x, x) \leq ||x||^2$ for all vectors $x \in V$, show that **P** is an orthogonal projection. (Suggestion: If $x \in im \mathbf{P}$ and $y \in \ker \mathbf{P}$, apply the given condition to the vector $x + \lambda y$ for appropriate $\lambda \in \mathbb{C}$.) (2)
- 4. Let $\mathbf{u}_1, \mathbf{u}_2, \mathbf{v}_1, \mathbf{v}_2$ be non-zero column vectors in \mathbb{R}^n and define $\mathbf{P} = \mathbf{u}_1 \mathbf{u}_2^t + \mathbf{v}_1 \mathbf{v}_2^t$. Derive sufficient conditions on the given vectors so that \mathbf{P} is a projection. Further, derive sufficient conditions on the given vectors so that **P** is an orthogonal projection. (3+3)

5. Let $\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} \in \mathbb{R}^3$. Let $c = \min \|\mathbf{A}\mathbf{x} - \mathbf{b}\|$, where the minimum is taken over all the column vectors \mathbf{x} in \mathbb{R}^3 . Determine c and obtain the solution \mathbf{x} (2+4)

with least norm such that $c = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|$.

6. Let
$$\mathbf{A} = \begin{pmatrix} 1/3 & 1/3 & 1/3 \\ 1/2 & 0 & 1/2 \\ 1/4 & 1/4 & 1/2 \end{pmatrix}$$
. Explain in detail why the limit $\lim_{k \to \infty} \mathbf{A}^k$ exists and find the limit. (3+3)